Парогазовые электростанции. Газотурбинные и парогазовые установки. Влияние давления пара на эффективность ПГУ

Какие причины внедрения ПГУ в России, почему это решение трудное но необходимое?

Почему начали строить ПГУ

Децентрализованный рынок производства электроэнергии и теплоты диктует энергетическим компаниям необходимость повышения конкурентоспособности сво­ей продукции. Основное значение для них имеют минимизация риска инвестиций и реальные результаты, которые можно получить при использовании данной технологии.

Отмена государственного регу­лирования на рынке электроэнергии и теплоты, которые станут коммерческим продуктом, приведет к усилению конкуренции между их производителями. Поэтому в будущем только надежные и высо­корентабельные электростанции смогут обеспечить дополнитель­ные капиталовложения в осуществление новых проектов.

Критерии выбора ПГУ

Выбор того или иного типа ПГУ зависит от многих факто­ров. Одними из наиболее важных критериев в реализации про­екта являются его экономическая выгодность и безопасность.

Анализ существующего рынка энергетических установок пока­зывает значительную потребность в недорогих, надежных в эк­сплуатации и высокоэффективных энергетических установках. Выполненная в соответствии с этой концепцией модульная конструкция с заданными параметрами делает установку легко адаптируемой к любым местным условиям и специфическим требованиям заказчика.

Такая продукция удовлетворяет более 70 % заказчиков. Этим условиям в значительной степени соответствуют ГТ и ПГ-ТЭС утилизационного (бинарного) типа.

Энергетический тупик

Анализ энергетики России, выполненный рядом академи­ческих институтов, показывает: уже сегодня электроэнергетика России практически теряет ежегодно 3-4 ГВт своих мощностей. В результате к 2005 г. объем отработавшего свой физический ресурс оборудования будет составлять, по данным РАО “ЕЭС России”, 38 % общей мощности, а к 2010 г. этот показатель составит уже 108 млн. кВт (46 %).

Если события будут развиваться именно по такому сценарию, то большинство энергоблоков из-за старения в ближайшие годы войдут в зону серьезного риска аварий. Пробле­му технического перевооружения всех типов существующих элек­тростанций обостряет то, что даже часть сравнительно “молодых” энергоблоков 500-800 МВт исчерпала ресурс работы основных узлов и требует серьезных восстановительных работ.

Читайте также: Важность капитала при проектировании парогазовой станции

Реконструкция электростанций – это проще и дешевле

Продление сроков эксплуатации станций с заменой крупных узлов основного оборудования (роторов турбин, поверхностей на­грева котлов, паропроводов), конечно, значительно дешевле, чем строительство новых электростанций.

Электростанциям и заводам-изготовителям зачастую удобно и выгодно заменять оборудование на аналогичное демонтируемому. Однако при этом не используют­ся возможности значительного увеличения экономии топлива, не уменьшается загрязнение окружающей среды, не применяются со­временные средства автоматизированных систем нового оборудо­вания, увеличиваются затраты на эксплуатацию и ремонт.

Низкий КПД электростанций

Россия постепенно выходит на европейский энергетический рынок, войдет в ВТО, вместе с тем у нас много лет сохраняется крайне низкий уровень тепловой эффективности электроэнерге­тики. Средний уровень коэффициента полезного действия энерго­установок при работе на конденсационном режиме равен 25 %. Это означает, что при повышении цены на топливо до мирового уровня цена на электроэнергию у нас неизбежно станет в полто­ра-два раза выше мировой, что отразится на других товарах. По­этому реконструкция энергоблоков и тепловых станций должна производиться так, чтобы вводимое новое оборудование и отдель­ные узлы электростанций были на современном мировом уровне.

Энергетика выбирает парогазовые технологии

Сейчас, несмотря на тяжелое финансовое положение, в конст­рукторских бюро энергомашиностроительных и авиадвигательных научно-исследовательских институтов возобновились разработки новых систем оборудования для тепловых электростанций. В частности, речь идет о создании конденсационных парогазовых электро­станций с коэффициентом полезного действия до 54-60 %.

Эконо­мические оценки, сделанные разными отечественными организациями, свидетельствуют о реальной возможности снизить издержки производства электроэнергии в России, если строить подобные электростанции.

Даже простые ГТУ будут эффективнее по КПД

На ТЭЦ не обязательно повсеместно применять ПГУ такого типа, как ПГУ-325 и ПГУ-450. Схемные решения могут быть различны­ми в зависимости от конкретных условий, в частности, от соотно­шения тепловых и электрических нагрузок.

Читайте также: Как выбрать газотурбинную установку для станции с ПГУ

В простейшем случае при использовании тепла отработавших в ГТУ газов для теплоснаб­жения или производства технологического пара электрический КПД ТЭЦ с современными ГТУ достигнет уровня 35 %, что также зна­чительно выше существующих сегодня. Об отличиях КПД ГТУ и ПТУ - читате в статье Как отличаются КПД ГТУ и КПД ПГУ для отечественных и зарубежных электростанций

Применение ГТУ на ТЭЦ может быть очень широким. В настоя­щее время около 300 паротурбинных агрегатов ТЭЦ мощностью 50-120 МВт питаются паром от котлов, сжигающих 90 и более процентов природного газа. В принципе все они являются кандида­тами на техническое перевооружение с использованием газовых турбин единичной мощностью 60-150 МВт.

Трудности с внедрением ГТУ и ПГУ

Однако процесс промышленного внедрения ГТУ и ПГУ в на­шей стране идет крайне медленно. Главная причина - инвестици­онные трудности, связанные с необходимостью достаточно круп­ных финансовых вложений в минимально возможные сроки.

Другое сдерживающее обстоятельство связано с фактическим отсутствием в номенклатуре отечественных производителей чисто энергетических газовых турбин, проверенных в широкомасштаб­ной эксплуатации. За прототипы таких газовых турбин можно при­нять ГТУ нового поколения.

Бинарные ПГУ без регенерации

Определенным преимуществом обладают бинарные ПГУ, как наиболее дешевые и надежные в эксплуатации. Паровая часть би­нарных ПГУ очень проста, так как паровая регенерация невыгодна и не используется. Температура перегретого пара на 20-50 °С ниже температуры отработавших в ГТУ газов. В настоящее время она дос­тигла уровня стандартных в энергетике 535-565 °С. Давление све­жего пара выбирается так, чтобы обеспечить приемлемую влаж­ность в последних ступенях, условия работы и размеры лопаток которых примерно такие же, как и в мощных паровых турбинах.

Влияние давления пара на эффективность ПГУ

Учитываются, конечно, экономические, стоимостные факторы, так как давление пара мало влияет на термический КПД ПГУ. Чтобы уменьшить температурные напоры между газами и паро­водяной средой и лучшим образом с меньшими термодинами­ческими потерями использовать тепло отработавших в ГТУ га­зов, испарение питательной воды организуют при двух или трех уровнях давления. Выработанный при пониженных давлениях пар подмешивают в промежуточных точках проточной части турби­ны. Осуществляют также промежуточный перегрев пара.

Читайте также: Выбор цикла парогазовой установки и принципиальной схемы ПГУ

Влияние температуры уходящих газов на КПД ПГУ

С повышением температуры газов на входе в турбину и выхо­де из нее параметры пара и экономичность паровой части цикла ГТУ возрастают, способствуя общему увеличению КПД ПГУ.

Выбор конкретных направлений создания, совершенствования и широкомасштабного производства энергетических машин дол­жен решаться с учетом не только термодинамического совершен­ства, но и инвестиционной привлекательности проектов. Инвести­ционная привлекательность российских технических и производственных проектов для потенциальных инвесторов - важнейшая и актуальнейшая проблема, от решения которой в значительной мере зависит возрождение экономики России.

(Visited 3 318 times, 4 visits today)

В зависимости от чего выбираются парогазовые циклы , какой выбор будет оптимальным, и как будет выглядеть технологическая схема ПГУ?

Как только становятся известны паритет капитала и конфигу­рация в отношении расположения валов, можно приступить к пред­варительному выбору цикла.

Диапазон простирается от очень про­стых “циклов одного давления” до чрезвычайно сложных “циклов тройного давления с промежуточным перегревом”. Коэффициент полезного действия цикла с увеличением комплексности повы­шается, однако капитальные затраты также возрастают. Ключом выбора правильного цикла является определение такого цикла давления, который лучше всего подходит для заданного коэф­фициента полезного действия и заданных показателей затрат.

Парогазовая установка с циклом одного давления

Этот цикл часто используется для более благоприятного в цене топ­лива ухудшенного качества, как например, сырая нефть и тяже­лое нефтяное топливо с высоким содержанием серы.

По сравнению со сложными циклами инвестиции в ПГУ про­стых циклов незначительны.

На схеме изображена ПГУ с дополнительным змеевиком-испарителем на холодном конце кот­ла-утилизатора. Этот испаритель отбирает у отработавших газов дополнительное тепло и отдает пар деаэратору с целью использо­вания его для подогрева питательной воды.

Благодаря этому отпа­дает необходимость в отборе пара для деаэратора из паровой тур­бины. Результатом по сравнению с простейшей схемой одного давления является улучшение коэффициента полезного действия, однако соответственно повышаются капитальные вложения.

ПГУ с циклом двух давлений

Большинство находящихся в эксплуатации комбинирован­ных установок имеют циклы двойного давления. Вода подается двумя отдельными питательными насосами в экономайзер двой­ного давления.

Читайте также: Как выбрать газотурбинную установку для станции с ПГУ

Вода низкого давления поступает затем в первый змеевик испарителя, а вода высокого давления нагревается в эко­номайзере, прежде чем она испарится и перегреется в горячей части котла-утилизатора. Отбор из барабана низкого давления снабжает паром деаэратор и паровую турбину.

Коэффициент полезного действия цикла двойного давления, как показано на Т-S-диаграмме на рисунке, выше, чем КПД цикла одного давления, из-за более полного использования энер­гии отработавших газов газовой турбины (дополнительная пло­щадь СС"Д"Д).

Однако при этом увеличиваются капитальные вложения на дополнительное оборудование, например, на питательные на­сосы, экономайзеры двойного давления, испарители, низкона­порные трубопроводы и два паропровода НД к паровой турбине. Поэтому рассматриваемый цикл применяют только при высо­ком паритете капитала.

ПГУ с циклом тройного давления

Это одна из наиболее сложных схем, которые находят применение в настоящее время. Она применяется в случаях очень высокого паритета капитала, при этом высокий коэффициент полезно­го действия может быть получен только с высокими затратами.

К котлу-утилизатору добавляется третья ступень, которая до­полнительно использует теплоту отработавших газов. Насос высокого давления подает питательную воду в трехступенча­тый экономайзер высокого давления и далее в барабан - се­паратор высокого давления. Питательный насос среднего дав­ления подает воду в барабан - сепаратор среднего давления.

Часть питательной воды от насоса среднего давления через дрос­сельное устройство поступает в барабан - сепаратор низкого давления. Пар из барабана высокого давления поступает в паро­перегреватель и затем в часть высокого давления паровой турби­ны. Отработавший в части высокого давления (ЧВД) пар сме­шивается с паром, поступившим из барабана среднего давления, перегревается и поступает на вход части низкого давления (ЧНД) паровой турбины.

Читайте также: Зачем строить Парогазовые ТЭЦ? В чем преимущества парогазовых установок.

Коэффициент полезного действия может быть дополнитель­но повышен за счет подогрева топлива водой высо­кого давления перед его поступлением в газовую турбину.

Диаграмма выбора цикла

Типы циклов, начиная с цикла одного давления и кончая цик­лом тройного давления с промежуточным перегревом, представле­ны как функции паритета напитала.

Цикл выбирается путем опре­деления, какие из циклов соответствуют данному показателю паритета капитала для конкретного случая применения. Если, на­пример, паритет капитала составляет 1800 дол. США/кВт, то выбирается цикл двойного или тройного давления.

В первом при­ближении решение принимается в пользу цикла тройного давле­ния, так как при неизменном паритете капитала коэффициент полезного действия и мощность выше. Однако при более точном рассмотрении параметров может оказаться, что для удовлетво­рения других требований более целесообразным является выбор цикла двойного давления.

Существуют случаи, для которых диаграмма выбора цикла неприменима. Наиболее часто встречающимся примером подоб­ного случая является ситуация, когда заказчик хочет иметь в рас­поряжении электрическую мощность как можно скорее и оптимизация для него менее важна, чем короткие сроки поставки.

В зависимости от обстоятельств может оказаться целесообразным циклу с несколькими давлениями предпочесть цикл с одним давлением, так как затраты времени меньше. Для этой цели можно разработать серию стандартизированных циклов с заданными па­раметрами, которые с успехом находят применение в подобных случаях.

(Visited 2 507 times, 1 visits today)

Парогазовые установки производят электричество и тепловую энергию. Парогазовая установка состоит из двух отдельных блоков: паросилового и газотурбинного. Топливом отечественных ПГУ является природный газ, однако им может служить как природный газ, так и продукты нефтехимической промышленности, например мазут. В парогазовых установках на одном валу с газовой турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей часть своей энергии и далее продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где вырабатывается поступающий на паровую турбину водяной пар.

Сооружение установок комбинированного цикла (или ПГУ) является в последнее время основной тенденцией развития мировой и отечественной теплоэнергетики. Сочетание циклов на базе ГТУ, т.е. газотурбинной установки, и паротурбинной установки (циклов Брайтона и Ренкина соответственно) обеспечивает резкий скачок тепловой экономичности электростанции, при этом около двух третей её мощности приходится на ГТУ. Пар, выработанный за счет тепла отработанных газов ГТУ, как уже отмечалось, приводит в действие паровую турбину.

Общее представление о котлах-утилизаторах в схеме ПГУ можно получить на основе краткого описания КУ типа HRSG:

Котел-утилизатор типа HRSG в составе блока ПГУ предназначен для получения перегретого пара высокого, среднего и низкого давлений за счет использования тепла горячих выхлопных газов ГТУ.

Котел-утилизатор HRSG – вертикального типа, барабанный, с естественной циркуляцией в испарительных контурах высокого, среднего и низкого давлений, с собственным несущим каркасом.

Конструкция котла-утилизатора обеспечивает возможность проведения предпусковых и эксплуатационных водно-химических промывок пароводяного тракта, а также консервации внутренних поверхностей котла при остановах.

По пароводяному тракту гидравлическая схема котла-утилизатора состоит из трёх самостоятельных контуров с различным уровнем давлений:

тракт низкого давления;

тракт среднего давления;

тракт высокого давления.

Поверхности нагрева труб (испарители, пароперегреватели и т.п.) этого котла располагаются горизонтально. Все они имеют змеевиковую конструкцию трубных систем, которые объединяются коллекторами и с помощью отводящей системы трубопроводов, подсоединяются к барабану-сепаратору. При таком исполнении термические напряжения при изменениях нагрузки и пусках существенно ниже, трубные пакеты могут свободно расширяться, что сводит к минимуму риск защемления, приводящего к разрушению труб.

Трубки теплообменников секций ВД, СД и НД изготовлены со сплошным оребрением с учетом конвективного характера теплообмена между горячими газами из ГТУ и поверхностями теплообмена. Оребрение выполнено из углеродистой стали диаметром 62-68 мм и толщиной 1 мм.

Система очистки пара от капель котловой воды упрощенная, в ней отсутствуют внутрибарабанные циклоны, как это предусматривается на обычных паровых котлах. Имеются линии периодической продувки из барабанов, однако не предусмотрены специальные линии периодической продувки испарителей из нижних точек, где эти линии более актуальны в отношении вывода из котла накопившихся шламовых образований.

Из барабана насыщенный пар поступает в пароперегреватель высокого давления.

Котел – утилизатор HRSG работает на отходящих газах газовой турбины блока. По ходу движения дымовых газов поверхности нагрева котла расположены в следующей последовательности:

выходная ступень пароперегревателя ВД;

выходная ступень промперегрева;

вторая часть входной ступени пароперегревателя ВД;

входная ступень промперегрева;

первая часть входной ступени пароперегревателя ВД;

испаритель ВД;

экономайзер ВД вторая ступень;

пароперегреватель СД;

пароперегреватель НД;

экономайзер ВД первая ступень;

испаритель СД;

экономайзер СД выходная часть первой ступени / экономайзер ВД выходная часть первой ступени;

испаритель НД;

экономайзер СД входная часть первой ступени / экономайзер ВД входная часть первой ступени;

подогреватель конденсата (экономайзер НД).

В выхлопной части котла установлен глушитель и заслонка, предотвращающая попадания осадков в котел во время его стоянки.

Более подробные сведения по этому котлу-утилизатору можно найти в нашем примере "

Парогазовые электростанции представляют собой сочетание паровых и газовых турбин. Такое объединение позволяет снизить потери отработавшей теплоты газовых турбин или теплоты уходящих газов паровых котлов, что обеспечивает повышение КПД парогазовых установок (ПГУ) по сравнению с отдельно взятыми паротурбинными и газотурбинными установками.

В настоящее время различают парогазовые установки двух типов:

а) с высоконапорными котлами и со сбросом отработавших газов турбины в топочную камеру обычного котла;

б) с использованием теплоты отработавших газов турбины в котле.

Принципиальные схемы ПГУ этих двух типов представлены на рис. 2.7 и 2.8.

На рис. 2.7 представлена принципиальная схема ПГУ с высоконапорным паровым котлом (ВПГ) 1 , в который подается вода и топливо, как и на обычной тепловой станции для производства пара. Пар высокого давления поступает в конденсационную турбину 5 , на одном валу с которой находится генератор 8 . Отработавший в турбине пар поступает сначала в конденсатор 6 , а затем с помощью насоса 7 направляется снова в котел 1 .

Рис 2.7. Принципиальная схема пгу с впг

В то же время образующиеся при сгорании топлива в котле газы, имеющие высокую температуру и давление, направляются в газовую турбину 2 . На одном валу с ней находятся компрессор 3 , как в обычной ГТУ, и другой электрический генератор 4 . Компрессор предназначен для нагнетания воздуха в топочную камеру котла. Выхлопные газы турбины 2 подогревают также питательную воду котла.

Такая схема ПГУ обладает тем преимуществом, что в ней не требуется дымососа для удаления отходящих газов котла. Следует заметить, что функцию дутьевого вентилятора выполняет компрессор 3 . КПД такой ПГУ может достигать 43 %.

На рис. 2.8 показана принципиальная схема другого типа ПГУ. В отличие от ПГУ, представленной на рис. 2.7, газ в турбину 2 поступает из камеры сгорания 9 , а не из котла 1 . Далее отработавшие в турбине 2 газы, насыщенные до 16―18 % кислородом благодаря наличию компрессора, поступают в котел 1 .

Такая схема (рис. 2.8) обладает преимуществом перед рассмотренной выше ПГУ (рис. 2.7), так как в ней используется котел обычной конструкции с возможностью использования любого вида топлива, в том числе и твердого. В камере сгорания 3 при этом сжигается значительно меньше, чем в схеме ПГУ с высоконапорным паровым котлом, дорогостоящего в настоящее время газа или жидкого топлива.

Рис 2.8. Принципиальная схема пгу (сбросная схема)

Такое объединение двух установок (паровой и газовой) в общий парогазовый блок создает возможность получить также и более высокие маневренные качества по сравнению с обычной тепловой станцией.

Принципиальная схема атомных электростанций

По назначению и технологическому принципу действия атомные станции практически не отличаются от традиционных тепловых станций. Их существенное различие заключается, во-первых, в том, что на АЭС в отличие от ТЭС пар образуется не в котле, а в активной зоне реактора, а во-вторых, в том, что на АЭС используется ядерное топливо, в состав которого входят изотопы урана-235 (U-235) и урана-238 (U-238).

Особенностью технологического процесса на АЭС является также образование значительных количеств радиоактивных продуктов деления, в связи с чем атомные станции технически более сложны по сравнению с тепловыми станциями.

Схема АЭС может быть одноконтурной, двухконтурной и трехконтурной (рис. 2.9).

Рис. 2.9. Принципиальные схемы АЭС

Одноконтурная схема (рис. 2.9,а) наиболее проста. Выделившееся в ядерном реакторе 1 вследствие цепной реакции деления ядер тяжелых элементов тепло переносится теплоносителем. Часто в качестве теплоносителя служит пар, который далее используется как на обычных паротурбинных электростанциях. Однако образующийся в реакторе пар радиоактивен. Поэтому для защиты персонала АЭС и окружающей среды большая часть оборудования должна иметь защиту от излучения.

По двух- и трехконтурной схемам (рис. 2.9,б и 2.9,в) отвод тепла из реактора осуществляется теплоносителем, который затем передает это тепло рабочей среде непосредственно (например, как в двухконтурной схеме через парогенератор 3 ) или через теплоноситель промежуточного контура (например, как в трехконтурной схеме между промежуточным теплообменником 2 и парогенератором 3 ). На рис. 2.9 цифрами 5 , 6 и 7 обозначены конденсатор и насосы, выполняющие те же функции, что и на обычной ТЭС.

Ядерный реактор часто называют «сердцем» атомной электростанции. В настоящее время существует довольно много видов реакторов.

В зависимости от энергетического уровня нейтронов, под воздействием которых происходит деление ядерного топлива, АЭС можно разделить на две группы:

    АЭС с реакторами на тепловых нейтронах ;

    АЭС с реакторами на быстрых нейтронах .

Под воздействием тепловых нейтронов способны делиться лишь изотопы урана-235, содержание которых в природном уране составляет всего 0,7 %, остальные 99,3 % ― это изотопы урана-238. Под воздействием нейтронного потока более высокого энергетического уровня (быстрых нейтронов) из урана-238 образуется искусственное ядерное топливо плутоний-239, которое используется в реакторах на быстрых нейтронах. Подавляющее большинство эксплуатируемых в настоящее время энергетических реакторов относится к первому типу.

Принципиальная схема атомного энергетического реактора, используемого в двухконтурной схеме АЭС, представлена на рис. 2.10.

Ядерный реактор состоит из активной зоны, отражателя, системы охлаждения, системы управления, регулирования и контроля, корпуса и биологической защиты.

Активная зона реактора - область, где поддерживается цепная реакция деления. Она слагается из делящегося вещества, замедлителя и отражателя нейтронов теплоносителя, регулирующих стержней и конструкционных материалов. Основными элементами активной зоны реактора, обеспечивающими энерговыделение и самоподдерживающими реакцию, являются делящееся вещество и замедлитель. Активная зона отдалена от внешних устройств и работы персонала зоной защиты.

О статье, в которой подробно и простыми словами описан цикл ПГУ-450. Статья действительно очень легко усваивается. Я же хочу рассказать о теории. Коротко, но по-делу.

Материал я позаимствовал из учебного пособия «Введение в теплоэнергетику» . Авторы этого пособия — И. З. Полещук, Н. М. Цирельман. Пособие предлагается студентам УГАТУ (Уфимский государственный авиационный технический университет) для изучения одноименной дисциплины.

Газотурбинная установка (ГТУ) представляет собой тепловой двигатель, в котором химическая энергия топлива преобразуется сначала в теплоту, а затем в механическую энергию на вращающемся валу.

Простейшая ГТУ состоит из компрессора, в котором сжимается атмосферный воздух, камеры сгорания, где в среде этого воздуха сжигается топливо, и турбины, в которой расширяются продукты сгорания. Так как средняя температура газов при расширении существенно выше, чем воздуха при сжатии, мощность, развиваемая турбиной, оказывается больше мощности, необходимой для вращения компрессора. Их разность представляет собой полезную мощность ГТУ.

На рис. 1 показаны схема, термодинамический цикл и тепловой баланс такой установки. Процесс (цикл) работающей таким образом ГТУ называется разомкнутым или открытым. Рабочее тело (воздух, продукты сгорания) постоянно возобновляется — забирается из атмосферы и сбрасывается в нее. КПД ГТУ, как и любого теплового двигателя, представляет собой отношение полезной мощности N ГТУ к расходу теплоты, полученной при сжигании топлива:

η ГТУ = N ГТУ / Q T.

Из баланса энергии следует, что N ГТУ = Q T — ΣQ П, где ΣQ П — общее количество отведенной из цикла ГТУ теплоты, равное сумме внешних потерь.

Основную часть потерь теплоты ГТУ простого цикла составляют потери с уходящими газами:


ΔQух ≈ Qух — Qв; ΔQух — Qв ≈ 65…80%.

Доля остальных потерь значительно меньше:

а) потери от недожога в камере сгорания ΔQкс / Qт ≤ 3%;

б) потери из-за утечек рабочего тела; ΔQут / Qт ≤ 2%;

в) механические потери (эквивалентная им теплота отводится из цикла с маслом, охлаждающим подшипники) ΔNмех / Qт ≤ 1%;

г) потери в электрическом генераторе ΔNэг / Qт ≤ 1…2%;

д) потери теплоты конвекцией или излучением в окружающую среду ΔQокр / Qт ≤ 3%

Теплота, которая отводится из цикла ГТУ с отработавшими газами, может быть частично использована вне цикла ГТУ, в частности, в паросиловом цикле.

Принципиальные схемы парогазовых установок различных типов приведены на рис. 2.

В общем случае КПД ПГУ:

Здесь — Qгту количество теплоты, подведенной к рабочему телу ГТУ;

Qпсу — количество теплоты, подведенной к паровой среде в котле.

Рис. 1. Принцип действия простейшей ГТУ

а — принципиальная схема: 1 — компрессор; 2 — камера сгорания; 3 — турбина; 4 — электрогенератор;
б — термодинамический цикл ГТУ в ТS-диаграмме;
в — баланс энергии.

В простейшей бинарной парогазовой установке по схеме, показанной на рис. 2 а, весь пар вырабатывается в котле-утилизаторе: η УПГ = 0,6…0,8 (в зависимости, главным образом, от температуры уходящих газов).

При Т Г = 1400…1500 К η ГТУ ≈ 0,35, и тогда КПД бинарной ПГУ может дос-тигать 50-55 %.

Температура отработавших в турбине ГТУ газов высока (400-450оС), следовательно, велики потери теплоты с уходящими газами и КПД газотурбинных электростанций составляет 38 % , т. е. он практически такой же, как КПД современных паротурбинных электростанций.

Газотурбинные установки работают на газовом топливе, которое существенно дешевле мазута. Единичная мощность современных ГТУ достигает 250 МВт, что приближается к мощности паротурбинных установок. К преимуществам ГТУ по сравнению с паротурбинными установками относятся:

  1. незначительная потребность в охлаждающей воде;
  2. меньшая масса и меньшие капитальные затраты на единицу мощности;
  3. возможность быстрого пуска и форсирования нагрузки.

Рис. 2. Принципиальные схемы различных парогазовых установок:

а — ПГУ с парогенератором утилизационного типа;
б — ПГУ со сбросом газов в топку котла (НПГ);
в — ПГУ на парогазовой смеси;
1 — воздух из атмосферы; 2 — топливо; 3 — отработавшие в турбине газы; 4 — уходящие газы; 5 — вода из сети на охлаждение; 6 — отвод охлаждающей воды; 7 — свежий пар; 8 — питательная вода; 9 – промежуточный перегрев пара; 10 — регенеративные отбросы пара; 11 — пар, поступающий после турбины в камеру сгорания.
К — компрессор; Т — турбина; ПТ — паровая турбина;
ГВ, ГН — газоводяные подогреватели высокого и низкого давления;
ПВД, ПНД — регенеративные подогреватели питательной воды высокого и низкого давления; НПГ, УПГ — низконапорный, утилизационный парогенераторы; КС — камера сгорания.

Объединяя паротурбинную и газотурбинную установки общим технологическим циклом, получают парогазовую установку (ПГУ), КПД который существенно выше, чем КПД отдельно взятых паротурбинной и газотурбинной установок.

КПД парогазовой электростанции на 17-20 % больше, чем обычной паротурбинной электростанции. В варианте простейшей ГТУ с утилизацией тепла уходящих газов коэффициент использования тепла топлива достигает 82-85%.